Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.244
1.
BMC Cancer ; 24(1): 520, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658865

Acute myeloid leukaemia (AML) is a fatal haematopoietic malignancy and is treated with the conventional combination of cytarabine (Ara-C) and daunorubicin (Dau). The survival rate of AML patients is lower due to the cardiotoxicity of daunorubicin. Clinically, homoharringtonine (HHT) plus Ara-C has been reported to be equally effective as Dau plus Ara-C in some types of AML patients with less toxic effects. We utilized the clinical use of homoharringtonine in combination with Ara-C to test its combination mechanism. We found that the insensitivity of AML cells to cytarabine-induced apoptosis is associated with increased Mcl-1 stability and p38 inactivation. HHT downregulates Mcl-1, phosphorylates H2AX and induces apoptosis by activating p38 MAPK. Inactivation of p38 through inhibitors and siRNA blocks apoptosis, H2AX phosphorylation and Mcl-1 reduction. HHT enhances Ara-C activation of the p38 MAPK signalling pathway, overcoming Ara-C tolerance to cell apoptosis by regulating the p38/H2AX/Mcl-1 axis. The optimal ratio of HHT to Ara-C for synergistic lethality in AML cells is 1:4 (M/M). HHT synergistically induces apoptosis in combination with Ara-C in vitro and prolongs the survival of xenografts. We provide a new mechanism for AML treatment by regulating the p38 MAPK/H2AX/Mcl-1 axis to improve cytarabine therapy.


Apoptosis , Cytarabine , Histones , Homoharringtonine , Leukemia, Myeloid, Acute , Myeloid Cell Leukemia Sequence 1 Protein , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases , Humans , Homoharringtonine/pharmacology , Cytarabine/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Apoptosis/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Mice , Histones/metabolism , Cell Line, Tumor , Drug Synergism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phosphorylation/drug effects , Female
2.
Cells ; 13(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38667302

Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a variety of inflammatory disorders, including autoimmune diseases. TLR signaling is therefore strictly controlled to balance optimal immune response and inflammation. However, its balancing mechanisms are not fully understood. In this study, we identified the E3 ubiquitin ligase LINCR/ NEURL3 as a critical regulator of TLR signaling. In LINCR-deficient cells, the sustained activation of JNK and p38 MAPKs induced by the agonists for TLR3, TLR4, and TLR5, was clearly attenuated. Consistent with these observations, TLR-induced production of a series of inflammatory cytokines was significantly attenuated, suggesting that LINCR positively regulates innate immune responses by promoting the activation of JNK and p38. Interestingly, our further mechanistic study identified MAPK phosphatase-1 (MKP1), a negative regulator of MAP kinases, as a ubiquitination target of LINCR. Thus, our results demonstrate that TLRs fine-tune the activation of MAP kinase pathways by balancing LINCR (the positive regulator) and MKP1 (the negative regulator), which may contribute to the induction of optimal immune responses.


Dual Specificity Phosphatase 1 , Signal Transduction , Toll-Like Receptors , Ubiquitin-Protein Ligases , Ubiquitination , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Toll-Like Receptors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Humans , Mice , Proteolysis , Immunity, Innate , p38 Mitogen-Activated Protein Kinases/metabolism , HEK293 Cells , Cytokines/metabolism
3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1000-1006, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621907

This study aims to investigate the effect and mechanism of Maxingshigan Decoction on inflammation in the rat model of cough variant asthma(CVA). The SPF-grade SD rats of 6-8 weeks were randomized into normal, model, Montelukast sodium, and low-, medium-, and high-dose Maxing Shigan Decoction groups, with 8 rats in each group. The CVA rat model was induced by ovalbumin(OVA) and aluminum hydroxide sensitization and ovalbumin stimulation. The normal group and model group were administrated with equal volume of normal saline by gavage, and other groups with corresponding drugs by gavage. After the experiment, the number of white blood cells in blood and the levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α) in the serum were measured. The lung tissue was stained with hematoxylin-eosin(HE). Western blot was employed to determine the protein levels of nuclear factor-κB(NF-κB), Toll-like receptor 4(TLR4), myeloid differentiation protein(MyD88), and mitogen-activated protein kinase(MAPK) in the lung tissue. Real-time PCR was carried out to measure the mRNA levels of TLR4 and MyD88 in the lung tissue. Compared with the normal group, the model group showed increased white blood cells, elevated IL-6 and TNF-α levels(P<0.01), lowered IL-10 level(P<0.01), up-regulated protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK(P<0.01) and mRNA levels of TLR4 and MyD88(P<0.01) in the lung tissue. HE staining showed obvious infiltration of inflammatory cells around the airway and cell disarrangement in the model group. Compared with the model group, Montelukast sodium and high-dose Maxing Shigan Decoction reduced the white blood cells, lowered the IL-6 and TNF-α levels(P<0.01), and elevated the IL-10 level(P<0.01). Moreover, they down-regulated the protein levels of TLR4, MyD88, p-p65/NF-κB p65, p-p38 MAPK/p38 MAPK in the lung tissue(P<0.01) and the mRNA levels of TLR4 and MyD88 in the lung tissue(P<0.01). HE staining showed that Montelukast sodium and high-dose Maxing Shigan Decoction reduced inflammatory cell infiltration and cell disarrangement. The number of white blood cells, the levels of IL-10 and TNF-α in the serum, the protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK, and the mRNA levels of TLR4 and MyD88 in the lung tissue showed no significant differences between the Montelukast sodium group and high-dose Maxing Shigan Decoction group. Maxing Shigan Decoction can inhibit airway inflammation in CVA rats by inhibiting the activation of TLR4/MyD88/NF-κB and p38 MAPK signaling pathways.


Acetates , 60522 , Cyclopropanes , NF-kappa B , Quinolines , Sulfides , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Interleukin-10/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Rats, Sprague-Dawley , Ovalbumin , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Inflammation , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger
4.
Biochemistry (Mosc) ; 89(2): 201-211, 2024 Feb.
Article En | MEDLINE | ID: mdl-38622090

Visomitin eye drops are the first and, so far, the only drug based on SkQ1 - the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium, developed in the laboratories of Moscow State University under the leadership of Academician V. P. Skulachev. SkQ1 is considered as a potential tool to combat the aging program. We have previously shown that it is able to prevent and/or suppress development of all manifestations of accelerated senescence in OXYS rats, including retinopathy, similar to the age-related macular degeneration (AMD). Here, we assessed the effect of Visomitin instillations on progression of the AMD-like pathology and p38 MAPK and ERK1/2 activity in the OXYS rat retina (from the age of 9 to 12 months). Wistar and OXYS rats treated with placebo (composition identical to Visomitin with the exception of SkQ1) were used as controls. Ophthalmological examination showed that in the OXYS rats receiving placebo, retinopathy progressed and severity of clinical manifestations did not differ from the intact OXYS rats. Visomitin suppressed progression of the AMD-like pathology in the OXYS rats and significantly improved structural and functional parameters of the retinal pigment epithelium cells and state of microcirculation in the choroid, which, presumably, contributed to preservation of photoreceptors, associative and ganglion neurons. It was found that the activity of p38 MAPK and ERK1/2 in the retina of 12-month-old OXYS rats is higher than that of the Wistar rats of the same age, as indicated by the increased content of phosphorylated forms of p38 MAPK and ERK1/2 and their target protein tau (at position T181 and S396). Visomitin decreased phosphorylation of p38 MAPK, ERK1/2, and tau indicating suppression of activity of these MAPK signaling cascades. Thus, Visomitin eye drops are able to suppress progression of the AMD-like pathology in the OXYS rats and their effect is associated with the decrease in activity of the MAPK signaling cascades.


Benzalkonium Compounds , MAP Kinase Signaling System , Macular Degeneration , Methylcellulose , Plastoquinone , Humans , Rats , Animals , Infant , Rats, Wistar , Ophthalmic Solutions/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Aging/metabolism , Signal Transduction , Drug Combinations
5.
Sci Adv ; 10(14): eadk8823, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38569037

Organisms across taxa face stresses including variable temperature, redox imbalance, and xenobiotics. Successfully responding to stress and restoring homeostasis are crucial for survival. Aging is associated with a decreased stress response and alterations in the microbiome, which contribute to disease development. Animals and their microbiota share their environment; however, microbes have short generation time and can rapidly evolve and potentially affect host physiology during stress. Here, we leverage Caenorhabditis elegans and its simplified bacterial diet to demonstrate how microbial adaptation to oxidative stress affects the host's lifespan and stress response. We find that worms fed stress-evolved bacteria exhibit enhanced stress resistance and an extended lifespan. Through comprehensive genetic and metabolic analysis, we find that iron in stress-evolved bacteria enhances worm stress resistance and lifespan via activation of the mitogen-activated protein kinase pathway. In conclusion, our study provides evidence that understanding microbial stress-mediated adaptations could be used to slow aging and alleviate age-related health decline.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Longevity/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Oxidative Stress , Diet , Bacteria/genetics , Bacteria/metabolism
6.
Neuroreport ; 35(7): 439-446, 2024 May 08.
Article En | MEDLINE | ID: mdl-38597327

We aimed to clarify the correlation between dynamic change of blood HSP70 and the prognosis of thrombolysis in human and rats, so as to explain the neuroprotection and early warning role of HSP70 in cerebral ischemia-reperfusion. Forty-two patients with acute ischemic stroke were divided into two groups according to the time from onset to thrombolytic therapy: 0 h-3 h (27 patients) and 3-4.5 h group (15 patients). The level of HSP70 in serum before and after thrombolysis was detected by ELISA. Furthermore, a rat model was also used to mimic the ischemic stroke and reperfusion. Peripheral blood of rat samples was collected to detect the level of HSP70 using Elisa. Several signal proteins from MAPK signaling pathway including JNK, p38, ERK (p42/44) were detected at different time points by Western blot of brain tissue. Patients who underwent thrombolytic therapy within 0-3 h had the highest HSP70 level at 1 h after thrombolysis. The higher HSP70 after thrombolysis, the better the patient prognosis. NIHSS scores showed HSP70 was positively correlated with cerebral ischemia. The levels of ERK family (p42/44 MAPK) and p-JNK were decreased gradually along with the time suffering cerebral ischemia. P-ERK, JNK, p-p38 had dynamic changes with increased ischemic time in the middle cerebral artery occlusion model. Dynamic change of HSP70 level in blood may be a biological index that reflects the functional condition of cell survival for cerebral ischemia and estimating the prognostic conditions. Importantly, HSP70 levels in blood were positively correlated with the p38 MAPK pathway in brain tissue.


Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Animals , Humans , Rats , Infarction, Middle Cerebral Artery , p38 Mitogen-Activated Protein Kinases/metabolism , Reperfusion
8.
J Ethnopharmacol ; 326: 117988, 2024 May 23.
Article En | MEDLINE | ID: mdl-38428657

ETHNOPHARMACOLOGICAL RELEVANCE: Perioperative or postoperative adjuvant chemotherapy based on 5-fluorouracil (5-FU) is a common first-line adjuvant therapy for gastric cancer (GC). However, drug resistance and the side effects of 5-FU have reduced its efficacy. Among these side effects, gastrointestinal (GI) toxicity is one of the most common. Xianglian Pill (XLP) is a Chinese patent medicine that is commonly used for the treatment of diarrhoea. It can reduce inflammation and has a protective effect on the intestinal mucosa. Recent studies have shown that many components of XLP can inhibite tumor cell growth. However, the therapeutic effect of XLP in combination with 5-FU on GC is unclear. AIM OF THE STUDY: To investigate whether the combination of XLP and 5-FU can enhance anti-GC activity while reducing GI toxicity. MATERIALS AND METHODS: XLP was administered orally during intraperitoneal injection of 5-FU in GC mice model. Mice were continuously monitored for diarrhea and xenograft tumor growth. After 2 weeks, the mice were sacrificed and serum was collected to determine interleukin-6 levels. Pathological changes, the expression of pro-inflammatory factors and p38 mitogen-activated protein kinase (MAPK) in GI tissue were determined by Western blot analysis. Pathological changes, apoptosis levels and p38 MAPK expression levels in xenograft tissues were also determined. RESULTS: The results showed that XLP could alleviate GI mucosal injury caused by 5-FU, alleviated diarrhea, and inhibited the expression of nuclear factor (NF)-κB and myeloid differentiation primary response-88. Besides, XLP could promote the 5-FU-induced apoptosis of GC cells and enhance the inhibitory effect of 5-FU on tumor xenografts. Further study showed that XLP administration could regulate the expression of p38 MAPK. CONCLUSIONS: XLP in combination with 5-FU could alleviate its GI side effects and enhance its inhibitory effect on xenograft tumor. Moreover, these effects were found to be related to the regulation of the p38 MAPK/NF-κB pathway.


Drugs, Chinese Herbal , Fluorouracil , Stomach Neoplasms , Humans , Mice , Animals , Fluorouracil/toxicity , Stomach Neoplasms/drug therapy , NF-kappa B/metabolism , MAP Kinase Signaling System , Diarrhea/chemically induced , Diarrhea/drug therapy , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Molecules ; 29(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38474581

Endothelial pro-inflammatory activation is pivotal in cardiac ischemia-reperfusion (I/R) injury pathophysiology. The dried flower bud of Edgeworthia gardneri (Wall.) Meisn. (EG) is a commonly utilized traditional Tibetan medicine. However, its role in regulating endothelium activation and cardiac I/R injury has not been investigated. Herein, we showed that the administration of EG ethanolic extract exhibited a potent therapeutic efficacy in ameliorating cardiac endothelial inflammation (p < 0.05) and thereby protecting against myocardial I/R injury in rats (p < 0.001). In line with the in vivo findings, the EG extract suppressed endothelial pro-inflammatory activation in vitro by downregulating the expression of pro-inflammatory mediators (p < 0.05) and diminishing monocytes' firm adhesion to endothelial cells (ECs) (p < 0.01). Mechanistically, we showed that EG extract inhibited the nuclear factor kappa-B (NF-κB), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways to attenuate EC-mediated inflammation (p < 0.05). Collectively, for the first time, this study demonstrated the therapeutic potential of EG ethanolic extract in alleviating I/R-induced inflammation and the resulting cardiac injury through its inhibitory role in regulating endothelium activation.


Myocardial Reperfusion Injury , Thymelaeaceae , Rats , Animals , Endothelial Cells/metabolism , NF-kappa B/metabolism , Inflammation/drug therapy , Plant Extracts/pharmacology , Myocardial Reperfusion Injury/drug therapy , Endothelium/metabolism , Thymelaeaceae/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Am J Chin Med ; 52(2): 565-581, 2024.
Article En | MEDLINE | ID: mdl-38480502

L48H37 is a synthetic curcumin analog that has anticancer potentials. Here, we further explored the anticancer effect of L48H37 on oral cancer cells and its mechanistic acts. Cell cycle distribution was assessed using flow cytometric analysis. Apoptosis was elucidated by staining with PI/Annexin V and activation of the caspase cascade. Cellular signaling was explored using apoptotic protein profiling, Western blotting, and specific inhibitors. Our findings showed that L48H37 significantly reduced the cell viability of SCC-9 and HSC-3 cells, resulting in sub-G1 phase accumulation and increased apoptotic cells. Apoptotic protein profiling revealed that L48H37 increased cleaved caspase-3, and downregulated cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP) in SCC-9 cells, and the downregulated cIAP1 and XIAP in both oral cancer cells were also demonstrated by Western blotting. Meanwhile, L48H37 triggered the activation of caspases and mitogen-activated protein kinases (MAPKs). The involvement of c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) in the L48H37-triggered apoptotic cascade in oral cancer cells was also elucidated by specific inhibitors. Collectively, these findings indicate that L48H37 has potent anticancer activity against oral cancer cells, which may be attributed to JNK/p38-mediated caspase activation and the resulting apoptosis. This suggests a potential benefit for L48H37 for the treatment of oral cancer.


Curcumin , Mouth Neoplasms , Humans , Caspases/metabolism , Curcumin/pharmacology , Cell Line, Tumor , Apoptosis , p38 Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Caspase 3/metabolism , Mouth Neoplasms/drug therapy , Inhibitor of Apoptosis Proteins/pharmacology
11.
Acta Pharm ; 74(1): 101-115, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38554386

Deguelin exhibits antiproliferative activity against various cancer cell types. Previous studies have reported that deguelin exhibits pro-apoptotic activity against human cancer cells. The current study aimed at further elaborating the anticancer effects of deguelin against multiple myeloma cells. Cell growth estimations were made through MTT assay. Phase contrast microscopy was used for the analysis of the viability of multiple myeloma cells. Colony formation from multiple myeloma cells was studied using a clonogenic assay. Antioxidative assays for determining levels of glutathione (GSH) and superoxide dismutase (SOD) were carried out after treating multiple myeloma cells with deguelin. The apoptosis of multiple myeloma cells was studied using AO/EB and Annexin V-FITC/PI staining methods. Multiple myeloma cell cycle analysis was performed through flow cytometry. mRNA expression levels were depicted using qRT-PCR. Migration and invasion of multiple myeloma cells were determined with the wound-healing and transwell assays, respectively. Deguelin specifically inhibited the multiple myeloma cell growth while the normal plasma cells were minimally affected. Multiple myeloma cells when treated with deguelin exhibited remarkably lower viability and colony-forming ability. Multiple myeloma cells treated with deguelin produced more SOD and had higher GSH levels. The multiple myeloma cell growth, migration, and invasion were significantly declined by in vitro administration of deguelin. In conclusion, deguelin treatment, when applied in vitro, induced apoptotic cell death and resulted in mitotic cessation at the G2/M phase through modulation of cell cycle regulatory mRNAs in multiple myeloma cells.


Multiple Myeloma , Proto-Oncogene Proteins c-akt , Rotenone/analogs & derivatives , Humans , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Multiple Myeloma/drug therapy , Cell Line, Tumor , Cell Cycle Checkpoints , Apoptosis , Cell Proliferation , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Eur J Pharmacol ; 970: 176435, 2024 May 05.
Article En | MEDLINE | ID: mdl-38428663

Punicalagin (PUN) is a polyphenol derived from the pomegranate peel. It has been reported to have many beneficial effects, including anti-inflammatory, anti-oxidant, and anti-proliferation. However, the role of PUN in macrophage phagocytosis is currently unknown. In this study, we found that pre-treatment with PUN significantly enhanced phagocytosis by macrophages in a time- and dose-dependent manner in vitro. Moreover, KEGG enrichment analysis by RNA-sequencing showed that differentially expressed genes following PUN treatment were significantly enriched in phagocyte-related receptors, such as the C-type lectin receptor signaling pathway. Among the C-type lectin receptor family, Mincle (Clec4e) significantly increased at the mRNA and protein level after PUN treatment, as shown by qRT-PCR and western blotting. Small interfering RNA (siRNA) mediated knockdown of Mincle in macrophages resulted in down regulation of phagocytosis. Furthermore, western blotting showed that PUN treatment enhanced the phosphorylation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) in macrophages at the early stage. Mincle-mediated phagocytosis by PUN was inhibited by PDTC (a NF-κB inhibitor) and SB203580 (a p38 MAPK inhibitor). In addition, PUN pre-treatment enhanced phagocytosis by peritoneal and alveolar macrophages in vivo. After intraperitoneal injection of Escherichia coli (E.coli), the bacterial load of peritoneal lavage fluid and peripheral blood in PUN pre-treated mice decreased significantly. Similarly, the number of bacteria in the lung tissue significantly reduced after intranasal administration of Pseudomonas aeruginosa (PAO1). Taken together, our results reveal that PUN enhances bacterial clearance in mice by activating the NF-κB and MAPK pathways and upregulating C-type lectin receptor expression to enhance phagocytosis by macrophages.


Hydrolyzable Tannins , Macrophages , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Signal Transduction , Phagocytosis , Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Lectins, C-Type/metabolism
13.
Food Chem Toxicol ; 186: 114561, 2024 Apr.
Article En | MEDLINE | ID: mdl-38438008

This study investigated the protective effects of L-theanine on hydrogen peroxide (H2O2)-induced intestinal barrier dysfunction in IPEC-J2 cells. Results showed that L-theanine reduced H2O2-induced IPEC-J2 cells inflammation and apoptosis, and decreased protein phosphorylation levels of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa-B (NF-κB). The p38 MAPK inhibitor (SB203580) decreased oxidative stress, the protein expression of phosphorylation of p38 MAPK and NF-κB, the H2O2-induced increase in mRNA expression of pro-apoptotic and pro-inflammatory related genes expression and secretion, and tight junction protein related genes expression, which was similar to the effect of L-theanine. In conclusion, L-theanine inhibited H2O2-induced oxidative damage and inflammatory reaction, eliminated apoptosis, and protected intestinal epithelial barrier damage by inhibiting the activation of p38 MAPK signaling pathway.


Glutamates , Hydrogen Peroxide , Intestinal Diseases , Humans , Hydrogen Peroxide/toxicity , NF-kappa B/metabolism , MAP Kinase Signaling System , Apoptosis , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Inflammation , Epithelial Cells/metabolism
14.
Cells ; 13(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38534361

BACKGROUND: Brain-derived neurotrophic factor (BDNF) has gained attention as a therapeutic agent due to its potential biological activities, including osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of BDNF have not been fully understood. This study aimed to investigate the action of BDNF on the osteoblast differentiation in bone marrow stromal cells, and its influence on signaling pathways. In addition, to evaluate the clinical efficacy, an in vivo animal study was performed. METHODS: Preosteoblast cells (MC3T3-E1), bone marrow-derived stromal cells (ST2), and a direct 2D co-culture system were treated with BDNF. The effect of BDNF on cell proliferation was determined using the CCK-8 assay. Osteoblast differentiation was assessed based on alkaline phosphatase (ALP) activity and staining and the protein expression of multiple osteoblast markers. Calcium accumulation was examined by Alizarin red S staining. For the animal study, we used ovariectomized Sprague-Dawley rats and divided them into BDNF and normal saline injection groups. MicroCT, hematoxylin and eosin (H&E), and tartrate-resistant acid phosphatase (TRAP) stain were performed for analysis. RESULTS: BDNF significantly increased ALP activity, calcium deposition, and the expression of osteoblast differentiation-related proteins, such as ALP, osteopontin, etc., in both ST-2 and the MC3T3-E1 and ST-2 co-culture systems. Moreover, the effect of BDNF on osteogenic differentiation was diminished by blocking tropomyosin receptor kinase B, as well as inhibiting c-Jun N-terminal kinase and p38 MAPK signals. Although the animal study results including bone density and histology showed increased osteoblastic and decreased osteoclastic activity, only a portion of parameters reached statistical significance. CONCLUSIONS: Our study results showed that BDNF affects osteoblast differentiation through TrkB receptor, and JNK and p38 MAPK signal pathways. Although not statistically significant, the trend of such effects was observed in the animal experiment.


Brain-Derived Neurotrophic Factor , Osteogenesis , Rats , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Calcium/pharmacology , Rats, Sprague-Dawley , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Food Funct ; 15(7): 3446-3462, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38450419

Endothelial dysfunction (ED) is an initiating trigger and key factor in vascular complications, leading to disability and mortality in individuals with diabetes. The research concerning therapeutic interventions for ED has gained considerable interest. Fenugreek, a commonly used edible plant in dietary consumption, has attracted significant attention due to its management of diabetes and its associated complications. The research presented in this study examines the potential therapeutic benefits of fenugreek in treating ED and investigates the underlying mechanism associated with its effects. The analysis on fenugreek was performed using 70% ethanol extract, and its chemical composition was analyzed using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). In total, we identified 49 compounds present in the fenugreek extract. These compounds encompass flavonoids, saponins, and phospholipids. Then, the models of ED in streptozotocin-induced diabetic mice and high glucose-induced isolated rat aortas were established for research. Through vascular function testing, it was observed that fenugreek extract effectively improved ED induced by diabetes or high glucose. By analyzing the protein expression of arginase 1 (Arg1), Arg activity, Arg1 immunohistochemistry, nitric oxide (NO) level, and the protein expression of endothelial nitric oxide synthase (eNOS), p38 mitogen-activated protein kinase (p38 MAPK), and p-p38 MAPK in aortas, this study revealed that the potential mechanism of fenugreek extract in anti-ED involves the downregulation of Arg1, leading to enhanced NO production. Furthermore, analysis of serum exosomes carrying Arg activity indicates that fenugreek may decrease the activity of Arg transported by serum exosomes, potentially preventing the increase in Arg levels triggered by the uptake of serum exosomes by vascular endothelial cells. In general, this investigation offers valuable observations regarding the curative impact of fenugreek extract on anti-ED in diabetes, revealing the involvement of the Arg1 pathway in its mechanism.


Diabetes Mellitus, Experimental , Endothelial Cells , Plant Extracts , Trigonella , Rats , Mice , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Arginase , p38 Mitogen-Activated Protein Kinases/metabolism , Glucose/metabolism , Nitric Oxide Synthase Type III/metabolism
17.
Basic Clin Pharmacol Toxicol ; 134(5): 686-694, 2024 May.
Article En | MEDLINE | ID: mdl-38439200

Glucocorticoids are widely used in the treatment of allergic and inflammatory diseases. Glucocorticoids have a widespread action on gene expression resulting in their pharmacological actions and also an array of adverse effects which limit their clinical use. It remains, however, to be studied which target gene effects are essential for the anti-allergic activity of glucocorticoids. Mitogen-activated protein kinase phosphatase-1 (MKP-1) inhibits proinflammatory signalling by suppressing the activity of mitogen activated protein kinase (MAP kinase) pathways. MKP-1 is one of the anti-inflammatory genes whose expression is enhanced by glucocorticoids. In the present study, we aimed to investigate the role of MKP-1 in the therapeutic effects of the glucocorticoid dexamethasone in acute allergic reaction. The effects of dexamethasone were studied in wild-type and MKP-1 deficient mice. The mice were first sensitized to ovalbumin, and the allergic reaction was then induced by a subcutaneous ovalbumin injection in the hind paw. Inflammatory edema was quantified with plethysmometer and expression of inflammatory factors was measured by quantitative reverse transcription polymerase chain reaction (RT-PCR). Dexamethasone reduced the ovalbumin-induced paw edema at 1.5, 3 and 6 h time points in wild-type mice by 70%, 95% and 89%, respectively. The effect was largely abolished in MKP-1 deficient mice. Furthermore, dexamethasone significantly attenuated the expression of ovalbumin-induced inflammatory factors cyclooxygenase-2 (COX-2); inducible nitric oxide synthase (iNOS); interleukins (IL) 1ß, 6 and 13; C-C motif chemokine 11 (CCL-11); tumour necrosis factor (TNF) and thymic stromal lymphopoietin (TSLP) in wild-type mice by more than 40%. In contrast, in MKP-1 deficient mice dexamethasone had no effect or even enhanced the expression of these inflammatory factors. The results suggest that dexamethasone alleviates allergic inflammation through an MKP-1-dependent mechanism. The results also demonstrate MKP-1 as an important conveyor of the favourable glucocorticoid effects in ovalbumin-induced type I allergic reaction. Together with previous findings, the present study supports the concept of MKP-1 enhancing compounds as potential novel anti-inflammatory and anti-allergic drugs.


Anti-Allergic Agents , Hypersensitivity , Animals , Mice , Glucocorticoids/pharmacology , Dexamethasone/pharmacology , Ovalbumin , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Interleukin-1beta , Inflammation/drug therapy , Hypersensitivity/drug therapy , Edema , Mitogen-Activated Protein Kinase Phosphatases , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Neoplasia ; 51: 100991, 2024 May.
Article En | MEDLINE | ID: mdl-38507887

Dihydroartemisinin (DHA) exerts an anti-tumor effect in multiple cancers, however, the molecular mechanism of DHA and whether DHA facilitates the anti-tumor efficacy of cisplatin in non-small cell lung cancer (NSCLC) are unclear. Here, we found that DHA potentiated the anti-tumor effects of cisplatin in NSCLC cells by stimulating reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress, C-Jun-amino-terminal kinase (JNK) and p38 MAPK signaling pathways both in vitro and in vivo. Of note, we demonstrated for the first time that DHA inhibits prostaglandin G/H synthase 1 (PTGS1) expression, resulting in enhanced ROS production. Importantly, silencing PTGS1 sensitized DHA-induced cell death by increasing ROS production and activating ER-stress, JNK and p38 MAPK signaling pathways. In summary, our findings provided new experimental basis and therapeutic prospect for the combined therapy with DHA and cisplatin in some NSCLC patients.


Artemisinins , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cisplatin/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis , Lung Neoplasms/pathology , Cell Line, Tumor , Cell Death , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 1/pharmacology
19.
Life Sci Alliance ; 7(5)2024 May.
Article En | MEDLINE | ID: mdl-38467420

Kinases are key players in endothelial barrier regulation, yet their temporal function and regulatory phosphosignaling networks are incompletely understood. We developed a novel methodology, Temporally REsolved KInase Network Generation (TREKING), which combines a 28-kinase inhibitor screen with machine learning and network reconstruction to build time-resolved, functional phosphosignaling networks. We demonstrated the utility of TREKING for identifying pathways mediating barrier integrity after activation by thrombin with or without TNF preconditioning in brain endothelial cells. TREKING predicted over 100 kinases involved in barrier regulation and discerned complex condition-specific pathways. For instance, the MAPK-activated protein kinase 2 (MAPKAPK2/MK2) had early barrier-weakening activity in both inflammatory conditions but late barrier-strengthening activity exclusively with thrombin alone. Using temporal Western blotting, we confirmed that MAPKAPK2/MK2 was differentially phosphorylated under the two inflammatory conditions. We further showed with lentivirus-mediated knockdown of MAPK14/p38α and drug targeting the MAPK14/p38α-MAPKAPK2/MK2 complex that a MAP3K20/ZAK-MAPK14/p38α axis controlled the late activation of MAPKAPK2/MK2 in the thrombin-alone condition. Beyond the MAPKAPK2/MK2 switch, TREKING predicts extensive interconnected networks that control endothelial barrier dynamics.


Endothelial Cells , Mitogen-Activated Protein Kinase 14 , Endothelial Cells/metabolism , Thrombin/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Protein Kinase Inhibitors
20.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Article En | MEDLINE | ID: mdl-38481807

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Cyclic AMP Response Element-Binding Protein , Hyperpigmentation , Animals , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Melanins/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , alpha-MSH/pharmacology , alpha-MSH/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Lipopolysaccharides/toxicity , Melanocytes/metabolism , Hyperpigmentation/drug therapy , Hyperpigmentation/metabolism , Monophenol Monooxygenase/metabolism , Cell Line, Tumor
...